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The real interaction between matter and electromagnetic radiation is too complicated for a complete theoretical 
investigation. Nevertheless, in some cases the problem admits an amazing simplification which allows one to consider 
interesting phenomena in the framework of rather simple models having even exact solutions. A model, which describes in 
the dipolar approximation the interaction of N  two-level atoms with a quantized radiation field in an ideal cavity with 
volume V , bears the name of Dicke. This model is of key importance for describing dynamical, collective and coherent 
effects in quantum optics. Since 1974, when Hepp and Lieb rigorously proved that the Dicke model exhibits a second order 
phase transition from the normal to a superradiant phase, its thermodynamic properties have been studied in detail in the 
context of critical phenomena and solid state physics. Quite recently, a new aspect emerged when it was realized that the 
quantum phase transition of the model is relevant to quantum information and quantum computing. Various physical 
approximations have been extensively debated in the above mentioned fields of research. Here, an attempt is made to 
review in a rigorous manner the thermodynamic properties of the original Dicke model and its different generalizations. 
Some new results concerning relations between different indicators of criticality are presented as well. 
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“Mathematics and physics are different enterprises: 
physics is looking for laws of nature, mathematics is trying 
to invent the structures and prove the theorems of 
mathematics. Of course these structures are not invented 
out of thin air but are linked, among other things, to 
physics”. 
P.D. Lax [1]. 
 
 

1. Introduction  
 
Since 1954, when Dicke suggested in his classical 

paper [2] the model which now bears his name, there has 
been an increasing activity in diverse fields of physics 
bearing a relation to the Dicke model (DM), such as 
critical phenomena, chaos, mesoscopics (level statistics, 
scaling), among others, see the review [3]. The 
investigation of the model in the context of quantum 
statistical mechanics was initiated by the seminal paper by 
Hepp and Lieb [4].They demonstrated that DM exhibits a 
second order phase transition from the normal to a 

superradiant phase. This is a striking example of when a 
macroscopic many-particle quantum phenomenon is 
predicted in a manner which is mathematically rigorous 
and exact. Up to now, this subject has been an area of 
exciting theoretical and mathematical research, which 
appear as a remarkable illustration of Lax’s statement. The 
observation of the superradiant phase transition (SPT) still 
remains a challenge for experiments. The hard problem is 
to provide a practical system suitable to realize the DM 
experimentally, see e.g. [5, 6] and references therein. In 
quantum electrodynamics, DM describes light-matter 
interaction in a photon cavity. With respect to the transport 
properties, candidates for experimental systems are arrays 
of excitonic quantum dots and electrons in quantum dots 
interacting with single phonon modes (see, e.g. the review 
[3]). We should mention also a recent observation of wave 
- matter amplification due to Raman superradiant light 
scattering in the Bose condensate of atoms in traps [7, 8]. 
It makes the DM relevant to this case [9]. Recently, a 
combination of a superconducting quantum interference 
device (SQUID) with a nanomechanical resonator 
(NAMR) has been advocated [10] as an experimental 
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scheme for testing the theoretical predictions of the model. 
It is remarkable that the same combination of devices can 
be regarded as an attractive solid state candidate (see the 
references in [10]) for processing quantum entanglement 
[11] in a system that would implement quantum 
computing [12]. Entanglement is a purely quantum 
mechanical feature which has been extensively studied in 
the last decades. Recent research confirms that 
entanglement really exists on a macroscopic level and may 
be related to known thermodynamic properties of quantum 
many-body systems. The DM, being exactly solvable, 
would play the role of a key model when looking for 
entanglement as a thermodynamic property. Here, we 
summarise the results of our investigations in the field of 
phase transitions of DM. In particular, we discuss 
indicators of criticality such as: order parameters, different 
susceptibilities, cross-correlations for both electromagnetic 
and atomic constituents of the superradiant state, etc. Our 
consideration of the thermodynamic properties of the 
model may be helpful in a further quest for entanglement 
detection. 

 
 
2. The single mode model 
 
The Dicke model of superradiance describes the 

interaction in a dipolar approximation of N  two-level 
atoms with one-mode of the electromagnetic field in an 
ideal cavity of volume V [2]. It is commonly used to 
illustrate collective effects in the atom-light interaction, 
leading to the concept of superradiance, when the atomic 
ensemble spontaneously emits electromagnetic waves with 
an intensity proportional to 2N , rather than to N  as one 
would expect if the atoms were radiating incoherently [3]. 
A two-level atom (called also spin 1/2) in the DM is 
described in terms of the Pauli matrices +σ  and −σ  
acting on a two dimensional complex Hilbert space 2C  
and satisfying the anticommutation relations 

2{ , } 2( ) { , } 0σ σ σ σ σ+ + + − −= = = ,{ , } 1σ σ+ − = . The 
single mode of the electromagnetic field is described by 
the creation and annihilation operators of a harmonic 
oscillator aa ,+  acting on the one-mode Fock space 1

BF  
and satisfying the commutation relations 
[ , ] 1, [ , ]a a a a+ + += =  [ , ] 0a a = . The Hilbert space for the 
composite system in the single mode case is 

( ) N
B CFF

⊗
⊗= 21 . The Hamiltonian of the Dicke model 

has the form (ħ 1== c ), 
 

( )1/2 .zH a a S a J aJ
N
λω ε+ + − += + + +         (1) 

 
Here ∞<< ω0  is the frequency of one mode of the 

electromagnetic field, R∈ε  is the atomic level splitting, 

0 λ< < ∞  is the atom-field coupling , 

1

1 ,
2

N
z z

i
i

S σ
=

= ∑ ( )∑
=

±± +=
N

i
iiJ

12
1 mμσσ . 

The factor 2/1−N  comes from the original dipole 
coupling strength which is proportional to 2/1−V ; as far as 
one considers a fixed density VN /=ρ , the difference 
amounts to a coupling constant renormalization. Only 
parameters 1=μ  and 0=μ  have a physical meaning. 
The latter case is known as the rotating wave 
approximation (RWA). 

The Hamiltonian H  is a self-adjoint operator on 
( )D T , the domain of aaT += ω . It is bounded from 

below and has a purely discrete spectrum with finite 
multiplicity. The operator exp( )Hβ−  is of Trace -class 
for all inverse temperatures 0>β  and the limit ∞→N  of 
the thermodynamic potential per spin 

1[ ] ( ) ln Tr exp( )Nf H N Hβ β−= − −  exists (see, e.g. [13]). 
The large- N  asymptotic behaviour of the eigenvalues of 
H  has been studied by exact quantum mechanical 
methods [14]. It provided a hint that the model exhibits a 
“phase transition” governed by λ  to a ground state with a 
macroscopic number of photons and spontaneously excited 
atoms [14]. It is known that in some cases DM is 
integrable by the Bethe anzatz techniques for an arbitrary 
number of atoms, reducing the problem to an algebraic 
equation from which it is far from being trivial to extract 
information for the general eigenvalues and eigenfunctions 
[15]. 

 
 
3. The thermodynamics of the model 
 
The equilibrium statistical mechanical properties of 

DM can be studied exactly and rigorously by different 
methods. The first consideration proposed in [4] was 
rather tedious and limited to the case of one-mode RWA. 
For a finite number of modes and beyond the RWA 
approximation, more convenient and transparent are the 
Coherent State Method (CSM) [16] and the Approximating 
Hamiltonian Method (AHM) [17]. In the AHM, the model 
Hamiltonian H is simplified by replacing some spin 
operator constructions by c-numbers. The resulting 
Hamiltonian is called the approximating Hamiltonian 

( )apprH C  if, under a proper choice of the parameters C , 
it can be proved to be equivalent to the initial one, in the 
sense that both Hamiltonians generate the same 
thermodynamic behaviour in the thermodynamic limit 

/ , .N V const N= → ∞  Several comments are in order 
here. The Dicke model has been studied by different 
approximate methods which have yielded exact results. 
For example Wang and Hioe [18] first used the CSM, 
however without complete mathematical reasoning. The 
proof was given later by Hepp and Lieb [16]. Similarly, 
there is the status of the approach by Bogoliubov, Zubarev 
and Tzerkovnikov (BZT) [19], used for the Dicke model 
by Giberd [20]. A comment on the foundations and the 
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lack of mathematical rigour of the BZT approach can be 
found in [21]. The wisdom is that some methods, which 
lack mathematically rigorous foundations, may yield exact 
results for particular models, but in other cases may not, 
see e.g. [22]. The model (1) exhibits a second order phase 
transition driven by the temperature from a normal phase 
to a superradiant phase, with a macroscopically occupied 
boson mode and highly correlated atomic states that 
possess the ability to superradiate [4, 16, 17]. For 
parameters ( )22 2: 1 /μ λ ωΛ = +  and ε  obeying the 

condition 2 | |εΛ < , no phase transition occurs at any 

temperature, whereas for 2 | |εΛ >  there exists a finite 

inverse critical temperature cβ  given by 

⎟
⎠

⎞
⎜
⎝

⎛
Λ

= −
2

1 ||tanh
||

2 ε
ε

β c . There is another phase transition 

of second order driven by the parameter λ , which the 

model exhibits at the point 0=T , 2 | |εΛ = . This kind of 
phase transition is driven by the quantum fluctuations 
associated with Heisenberg’s uncertainty principle, rather 
than by the thermal motion. Quite recently, a renewed 
interest in this issue has appeared due to studies of 
quantum entanglement [3, 23]. The quantum SPT at the 
critical point |1|/|| μωελ +=c  manifests itself, 
among other phenomena, in the entanglement between the 
atomic ensemble and the field mode. It manifests itself 
also as a matter-wave grating which has been observed 
experimentally [7-9]. In the normal phase  
 

1 0lim
HN

N a a− +

→∞
= , 

 
where 
 

( ) ( ) 1... : ...exp expH Tr H Tr Hβ β −
⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ . 

 
 In the superradiant phase, there is a macroscopic 
occupation of the boson mode: 
 

2
1 2

2 | ( ) |lim
HN

N a a Cλ μ
ω

− +

→∞
= , 

 
where 0C ≠  is a non-trivial solution of the self-consistent 
equation:  
 

( )
( )2 | || | tanh

2
E CCC

E C
βΛ

=  

and  

( ) ( )
1

22 4 2 2 2( ) : 4 / 1 | |E C Cε λ ω μ⎡ ⎤= + +⎢ ⎥⎣ ⎦
.. 

 

The self-consistent equation for C  indicates that the 
SPT is of mean field type. There exists a physical 
restriction on the parameters of the DM imposed by the 
Thomas-Reiche-Kühn sum rule that forbids the SPT [24]. 
The problem is closely related to the various 
approximations (e.g. with the usually neglected 2A -term) 
in the derivation of the original DM (1), see e.g. [25, 26]. 

 
 
4. Finite and infinite numbers of photon  
    modes  
 
No principal difficulties are encountered in extending 

the above consideration to the more general M - mode 
case ( )∞<≤≤ 01 MM , with k-dependent model 
constants, k being the length of the wave vector. and the 
Hamiltonian: 
 

( )
1

1/2

1

( )

( ) ,

M
z

M k k
k

M

k k k k
k

H k a a S

N k a J a J

ω ε

λ

+

=

− + − +

=

= + +

+ +

∑

∑
                        (2) 

 

where ( )∑
=

±± +=
N

i
ikikJ

12
1 mσμσ . 

Now the state space is 2
1 ( )M k N

BkF F C ⊗
== ⊗ ⊗ . 

The main conclusion is that there is effectively only 
one combination of the coupling constants in the model, 

2 2 2

1
: (1 ) ( ) / ( )

M

M k
k

k kμ λ ω
=

Λ = +∑ , which governs the phase 

transition. The thermodynamic behaviour of the M -mode 
DM can be obtained by replacing 2Λ  with 2

MΛ  and 
( )E C  with 

 

( )

1/222
2

1

( )( ) : 4 1 | |
( )

M
M k

k

kE C C
k

λε μ
ω=

⎧ ⎫⎡ ⎤⎪ ⎪= + +⎢ ⎥∑⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
in the one-mode results [4, 16, 17]. 

The generalization of the above results to the case of 
an infinite number of photon modes ~M N →∞  is 
possible in two ways [26, 27, 28]. The first one seems to 
be straightforward, provided the condition 

2
11 ( ) / ( )k k k Rλ ω∞

= ≤ < ∞∑  is fulfilled. In fact the 
majorization technique of the AHM requires an additional 
condition. While the result is certainly correct in the 
mathematical sense, this condition has an obvious physical 
drawback: it ignores the proportionality of the number of 
modes of the field to the volume V  of the cavity. In order 
to avoid this difficulty, in the genuine model (2) the 
replacement NM →  is attended to by the substitution 
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~ 1/2( ) ( )k k Nλ λ −→  (the additional dependence on 2/1−N  
is taken for thermodynamic reasons), and then the 

condition 1 2
1 ( ) / ( )kN k k Rλ ω∞−
= ≤ < ∞∑ % %  is imposed. For 

each finite integer N , the state space of the system is the 

N-fold completed tensor product 2
1 ( )N k N

Bk F C ⊗
=⊗ ⊗ . 

This model exhibits a phase transition at a critical 
temperature which coincides with the critical temperature 
of (1). However, in contrast to the case of a finite number 
of modes, there is no Bose-condensation of the 
electromagnetic modes. The phase transition here reflects 
only a deviation from the ideal Bose-distribution below 

1−
cβ  [27].  

 
 
5. Asymptotic convergence of  
    thermodynamic averages 
 
In a strict sense, thermodynamic equivalence of two 

Hamiltonians means not only convergence in the 
thermodynamic limit of the corresponding thermodynamic 
potentials, but also convergence of the corresponding 
Gibbs states. Technically speaking, thermodynamic 
averages can be evaluated as functions of derivatives of 
the thermodynamic potentials with respect to appropriate 
coupling parameters in the Hamiltonians (for finite N, 
these potentials are analytic functions). The proof of the 
convergence of the derivatives of a sequence of functions 
to a limit derivative requires additional mathematical 
efforts, and as a rule is true only under certain conditions. 
In this case, the following theorem due to Griffiths - Fisher 
(see, e.g. [29, 30, 31]) is useful. Let { }( )nf x , RIx ⊂∈ , 
be a sequence of convex functions which converges point 
wise to )(xf∞  as ∞→n . Then the left, ( 0)f x′ − , and 
the right, ( 0)f x′ + , derivatives at any point Ix∈ obey the 
inequalities 
 

( 0) liminf ( 0)
limsup ( 0) ( 0).

n n

n n

f x f x
f x f x

∞ →∞

→∞ ∞

′ ′− ≤ − ≤
′ ′+ ≤ +

 

 
If { ( )}nf x  and ( )f x∞′  are differentiable at a 

point Ix ∈0 , then 0 0lim ( ) ( ).n nf x f x→∞ ∞′ ′=  
This theorem is useful in proving the asymptotic 

closeness of certain average values in the model and 
approximating system. For applications, see Section 6. 
Another example of a mathematical result that has shed 
some light on the problem is a theorem originally due to 
Hadamard and Kolmogorov, which we give in a slightly 
different version [29, 30, 31]: Let ( ), 1,2,...,n x nΔ = be a 
sequence of functions that are continuously differentiable 
in the interval RbaI ∈= ],[  and have second derivatives 

( 0)n x′′Δ +  to the right of each point ),[ bas∈ . Suppose 
that for all Ix∈ | ( ) | ( ) 0n nx IεΔ ≤ → , as ∞→n , and 

that there exists a fixed positive number ( )ID  such that 
one of the following  two conditions holds for all 

:),[ bax∈  (i) ( )( 0)n x D I′′Δ + ≤  or  (ii) 

( )( 0) .n x D I′′Δ + ≥ −  Then, for all x  and n  satisfying the 
inequalities ,nn lbxla −≤≤+  where 

( ) ( ) 1/22[ ] ,n nl I D Iε=  the following  upper bound of the 

first derivative ( )n x′Δ  holds: 
 

| ( ) | 0,n nx l′Δ ≤ →  as .∞→n  
 

How useful these theorems are can be seen in [17, 26, 
30]. In the case under consideration, we can set 

( ) [ ( )] [ ( )]appr
N N Nh f H h f H hΔ = − , where  

( )H h H hNQ= +  and ( )appr apprH h H hNQ= + . 

The operator Q  may correspond to / , /zS N J N±  or to 
different powers of these operators. The auxiliary field 

or .h R C∈  If one can establish that ( )N hΔ obeys the 
conditions of the theorem, one can estimate the closeness 
of the first derivatives of the free energy densities. 
However, for explicit calculation of the Gibbs average 
value of Q, this operator must be such that the function 

[ ( )]appr
Nf H h  is explicitly known.  

We can obtain some important relations between the 
Gibbs mean values of operators related to the field and 
atomic constituents of the DM, by introducing sources for 
photons in the Hamiltonian (1): 

*( ) ( ),H H N a aν ν ν+= − +  where Cν ∈ . Then 
( )H ν  can be identically represented in the form 

 

1/2

* 2

( ) ( )

( ) | | ,

zH b b S b J bJ
N

NJ J

λν ω ε

λ ν ν ν
ω ω

+ + − +

+ −

= + + + +

+ + −

%

 

 
where new photon operators have been introduced as 

, ( )Nb a b bν
ω

+ + + + += − = . Since bb ,+  and aa ,+  are 

related by a unitary transformation, we have 
[ ]( ) ( ) .N Nf H f Hν ν⎡ ⎤= ⎣ ⎦

%  From this relation, one 

immediately obtains the equality of the derivatives 
 

[ ]( ) ( ) .
( ) ( )

n m n m

N Nn m n mf H f Hν ν
ν ν ν ν

+ +

∗ ∗
∂ ∂ ⎡ ⎤= ⎣ ⎦∂ ∂ ∂ ∂

%  

 
If 0,1 == mn , after setting 0=ν  one obtains 
 

HH N
J

N
a

ω
λ

−=  
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and a similar equality for the hermitian conjugate. If 
1== mn , after  setting 0ν =  one obtains 

 

,1,,
2

2

NN
J

N
J

N
a

N
a

HH βωω
λ

+⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
where the Bogoliubov-Duhamel inner product  

( )

0

1( , ) Tr e Tr e eHH H
HA A d A A

β
β τβ βτ

β
− −− + −⎡ ⎤= ⎢ ⎥⎣ ⎦∫ has 

been introduced. The above result implies an important 
relationship between the susceptibilities χ  of the 
electromagnetic field and the atomic subsystem: 

[ ] [ ] [ ]a a JH a a Hχ χ ω χ+= + . Here, the subscripts a  and 
J  indicate that the second order derivatives are taken over 

the external fields Cν ∈ , after the terms * ,a aν ν +  or 
* ,J Jν ν− +  have been added to the Hamiltonian in the 

bracket. In the above equality, the external fields are set 
equal to zero after the derivation, to ensure the comparison 
of the response properties of the field and atomic 
constituents of the system in the same thermal state. It is 
important that Eqs. (8), (9) and (10) are valid for every 
finite N . 
 

 
6. The equivalence of DM to the LMG model  
 
In the literature, there exist different statements of the 

equivalence of DM to models with direct spin-spin 
interaction, for comments see e.g. [22] and below. What 
has been proved [17] is that the Hamiltonian (2) is 
thermodynamically equivalent on the level of the free 
energy densities to the Hamiltonian: 
 

2

1

1 ( )
( )

M
z

S k k
k

kH S J J
N k

λε
ω

+ −

=
= − ∑ .                    (3) 

 
This result has been formalized as a mathematical theorem 
for a much larger class of models of matter interacting 
with boson fields, a particular case of which is the DM, 
see Theorem 4.1 in [29] (and also in [30]). For the free 
energy densities 1[ ] : ( ) ln Tr exp( )N M Mf H N Hβ β−= − −  

and 1[ ] : ( ) ln Tr exp( )N S Sf H N Hβ β−= − −  the following 
estimates have been obtained by the AHM: 
 

[ ] [ ] ,H B
N N M N S Nf H f Hδ δ− ≤ − ≤                   (4) 

 

where 1/2( )H
N O Nδ −=  and 1( ln )B O N NNδ

−= . The N-
dependence in the above bounds holds for all values of the 
temperature and the model parameters. This means that for 
studying the thermodynamics of the systems of two-level 
atoms at any , ( ), ( )k kε λ ω  and in the whole temperature 
interval ∞<≤ T0 , the effective Hamiltonian SH  can be 

used. The statement holds in the thermodynamic limit 
/ , .N V const N= →∞  If { 1, 1,..., }k k Mμ = =  or if 

{ 0, 1,..., }k k Mμ = = , then the M -mode DM is 
thermodynamically equivalent to the infinitely long-range 
Ising model in a transverse field  
 

( )221 (1)X z x
S MH S S

N
ε= − Λ  ,                 (4a) 

 
or to the infinitely long-range isotropic XY model in a 
transverse field,  
 

2 2 21 (0) ( ) ( )XY z x y
S MH S S S

N
ε ⎡ ⎤= − Λ +⎢ ⎥⎣ ⎦

,        (4b)    

respectively. 
Recently, the entanglement properties of systems 

undergoing quantum phase transitions have been studied 
in the framework of another model – the Lipkin-Meshkov-
Glick model (LMGM) [32]. It has been conjectured in the 
literature that in some cases the LMGM can be put into a 
one-to-one correspondence with the DM. This statement 
has not been proved and its correctness is somewhat 
doubtful due to the fact that it is based on a limiting 
procedure - the thermodynamic limit. 
To illustrate this point, consider the finite anisotropic 
LMG model with the Hamiltonian 
 

( ) ( )2 2

2
z x y

N
gH S S S
N

ε γ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

, 

 

where we have set 1 ,N
i iS

αα σ== ∑ , ,x y zα =  and 0g > , 

0γ > , and Rε ∈  are parameters. This model belongs to 
the class of models described by Eq. (3), and in this sense 
is equivalent to the DM after the appropriate choice of the 
model constants, see Section 4. On the other hand, the 
Hamiltonian NH  is thermodynamically equivalent on the 
level of free energy densities to the one-particle 
approximating Hamiltonian 
 

( ) 2 2( , ) ( )
2

appr z x y
N

gH a b S g aS bS N a bε γ γ= − + + +  

where the variational parameters a and b have to be 
determined from the absolute minimum condition for the 
approximating free energy density: 
 

,

1 2 2 2 2 2

2 2

[ ( , )] [ ( , )]min

ln 2cosh ( )
1 ( ) .
2

appr appr
N NN N

a b R
f H a b f H a b

g a b

g a b

β β ε γ

γ

∈

−

= =

= − + + +

+ +

      (5) 

 
The values a  and b , at which the absolute minimum of 
the approximating free energy density  
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is reached, are solutions of the equations for extremum of 
[ ( , )]appr

N Nf H a b  (known as self-consistency equations): 
 

,

,
( )

x

H a b

S a
N appr

N

=  
,

.
( )

y

H a b

S b
N appr

N

=  

In other words, with the aid of the AHM one can 
prove that 
 

[ ]

( )
,

lim

lim min , .

N N
N

appr
N NN a b R

f H

f H a b

→∞

→∞ ∈

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

          (6) 

 
Since the approximating free energy density (5) does not 
depend on N, the limit in the r.h.s. of Eq. (6) is trivially 
taken. 

By differentiation of [ ( , )]appr
N Nf H a b ,  we obtain the 

set of explicit equations 
 

 
2 2 2 2 2

2 2 2 2 2

tanh ( )

( )

g a b
ga a

g a b

β ε γ

ε γ

+ +
=

+ +
 ,              (7a)  

2 2 2 2 2

2 2 2 2 2

tanh ( )

( )

g a b
g b b

g a b

β ε γ
γ

ε γ

+ +
=

+ +
,             (7b) 

 
which are also independent of N. Obviously, they  always 
have a trivial solution  0a = , 0b = , for which the 
approximating free energy density equals 

1[ (0,0)] ln 2cosh .appr
N Nf H β β ε−= −  A nontrivial 

solution of Eqs. (7) with both 0a ≠  and 0b ≠  exists only 
in the isotropic case 1γ = . One can prove that when 1γ <  
the absolute minimum is reached at a non-trivial solution 
with 0a ≠ , 0=b , and when 1γ >  the nontrivial solution 

is 0a = , 0b ≠ . This is most readily seen in the zero-
temperature case. Then, by taking the limit β →∞  in (5), 
we obtain for the ground state energy per spin the simple 
expression 
 

0

2 2 2 2 2 2 2

[ ( , )] ( , )lim

1( ) ( ) ,
2

appr
N Nf H a b e a b

g a b g a b

β

ε γ γ

→∞
≡ =

= − + + + +
 

 
and equations (7a) and (7b) simplify to 
 

2 2 2 2 2( )a g a b gaε γ+ + =  ,                           (8a)  

2 2 2 2 2( )b g a b gbε γ γ+ + = .                          (8b) 
 

In the asymmetric case 1γ ≠ , the non-trivial solution 

0a ≠ , 0b =  exists when | |a
cg g ε> ≡  and reads 

21 ( / )a gε= ± − . Then, the ground state energy density 

is 0 0
1( ,0) | | ( / / ) (0,0)
2

a a
c ce a g g g g eε= − + < . 

The nontrivial solution 0a = , 0b ≠  exists when 

| | /b
cg g ε γ> ≡  and equals 21 ( / )b gε γ= ± − . The 

corresponding ground state energy density is 

0 0
1(0, ) | | ( / / ) (0,0)
2

b b
c ce b g g g g eε= − + < . 

If 0 1γ< < , then a b
c cg g<  and / /a b

c cg g g g> . 

Therefore, for all | |a
cg g ε> ≡  the absolute minimum of 

the free energy density is attained at the nontrivial solution 
0a ≠ , 0b = , and from the self-consistency equations it 

follows that  
 

( )
( )

,0

2lim 1 /
appr aN N

x x

N
H H

S S g
N N

ε
→∞

= = ± −      (9a) 

 
where the + or − sign corresponds to an appropriate 
symmetry broken phase, whereas 
 

( ),0

lim 0
appr

N N

y y

N
H H a

S S
N N→∞

= = .        (9b) 

 
Similarly, after diagonalization of ( ,0)appr

NH a  when 

| |a
cg g ε> ≡ , one can calculate  

 

( )
22 2

22 2,0

tanh
appr
N

z

H a

S g a
N g a

ε β ε
ε

−
= +

+
 

Hence, in the ground state one, obtains 
 

( ),0

lim
appr

N N

z z

N H H a

S S
N N g

ε
→∞

−
= = . 

 
However, one needs a special proof for the asymptotic 

convergence of the average values of the normalized total 
spin projections to the corresponding averages for the 
approximating system. The same is true for the average 
values of the normalized squared total spin projections. 
Note that the calculation of the latter values for the 
approximating system is straightforward and yields 
( 1γ < ): 
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( )

2 2

,0

11 1
appr
N

x

H a

S
N g N

ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 

( )

2

,0

1

appr
N

y

H a

S
N N

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

 

( )

2 2

,0

1 11
appr
N

z

H a

S
N g N N

ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 

 
By using the convergence (6) and the Griffiths-Fisher 

theorem, applied to the derivatives with respect to g,ε  
and γ  of the free energy densities for the model system, 

( , , ) : [ ]N N Nf g f Hε γ = , and the approximating one, see 
Eq. (5), one can prove that the Gibbs mean values of the 
operators 2/ , ( / )z xS N S N  and 2( / )yS N , taken with the 

Hamiltonians NH  and appr
NH , coincide in the 

thermodynamic limit. Note that the above obtained mean 
values satisfy the identity 
 

( ) ( ) ( )2 2 2
2

1 21

N

x y z

H
S S S

NN
+ + = + . 

 
The precise meaning of the equalities in (9) needs 

some explanation. In order to calculate the mean value of 
xS , or yS , one adds to the model Hamiltonian NH  the 

term xhS±  or yhS± , respectively. Then, the derivative 
of the free energy density with respect to the auxiliary 
field h  yields the corresponding mean value. Since this 
procedure changes the symmetry of the model 
Hamiltonian NH , and does not change the symmetry of 

appr
NH , the so obtained mean values are equivalent only 

in the sense of Bogoliubov’s quasi-averages, i.e. only 
when the auxiliary field h  is set to zero after the 
thermodynamic limit. Only in this sense do Eqs. (9) hold 
true. Note that the usual mean values of xS  and yS  for 
the model system with the Hamiltonian NH  are 
identically equal to zero, due to symmetry. As we have 
shown, this is not the case for the approximating 
Hamiltonian appr

NH . In the thermodynamic limit, the 
above results coincide with those obtained in [33] by a 
different method. With regard to the finite-size 
corrections, the following comment is in order. Due to the 
one-particle character of the approximating Hamiltonian, 
the corresponding free energy density is independent of 
N . So is the ground state energy density, when it is 
obtained as a zero-temperature limit of the former. On the 
other hand, average values of many-particle operators over 

the approximating Hamiltonian may have trivial 
N/1 corrections, due to the fact that in sums of the 

products of spin operators, some sites coincide and others 
do not. Therefore, the results of the AHM make sense only 
in the thermodynamic limit and the N/1  corrections 
obtained within the method have no physical relevance to 
the original system. Let us note, as a final result, that the 
mean values of the considered intensive operators obtained 
for both the DM and LMGM coincide in the 
thermodynamic limit. 

 
 
7. Discussion  
 
In the last few years, a new element was introduced 

into the study of the DM. It was realized that the quantum 
phase transition in this model is relevant to the subject of 
quantum information and quantum computing [3, 5, 6, 10, 
23, 34]. An advantage of the model is that the photon 
mode and the two-level atoms are natural choices for 
entangled subsystems. Entanglement expresses the 
enigmatic nonlocality inherent in quantum mechanical 
systems. Much effort has been devoted to elucidate the 
role of quantum critical phenomena (QCP) by studying 
quantum entanglement [11]. At a quantum critical point a 
modification of the ground state takes place which 
drastically impacts on the entanglement. It is important to 
understand how the entanglement depends on the order of 
the transition, on the range of interaction, etc. A complete 
theory of this phenomenon in many-particle systems is still 
lacking. Investigations so far have been focused on 
spatially one-dimensional systems or on higher-
dimensional systems with special types of long-range 
interaction - the so called systems with infinite 
coordination number. The former, exactly at the point of 
the quantum phase transition, can be effectively described 
by a two dimensional Conformal Field Theory (see 
e.g.[11]), while the latter trivially depend on the space 
dimensionality and have mean-field type critical 
behaviour. The DM provides simple analytical solutions 
for different entanglement measures, at and away from the 
critical point cλ , e.g. entanglement entropy, concurrence, 
etc [3,23,34]. The theory of DM formally represents a zero 
dimensional field theory which exhibits mean-field critical 
behaviour. From the theory of QCP, it is known that 
definitely pronounced quantum effects are felt long before 
the absolute zero temperature is reached. The revived 
interest in the DM is caused by the perceived relations 
between the thermodynamic and entanglement properties 
[34, 35]. It is known that mean-field models, as the ones 
under consideration, cannot provide nontrivial 
entanglement properties since the problem is effectively a 
single-body one in the thermodynamic limit. That is why 
one has to consider finite-N systems and the entanglement 
properties are necessarily tested in the framework of the 
finite-size scaling theory [34, 35]. 

The fact that the systems (2) and (3) are equivalent  in 
the thermodynamic limit (on the level of free energy 
densities), if one focuses on the atomic degrees of 
freedom, has been proved [17, 20]. However, what the 
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exact consequences of that are for the thermodynamic 
averages, and/or in the case of finite N , needs some 
further investigation, as we have pointed out. In this 
context, the following question arises: If two Hamiltonians 
generate equivalent critical behaviour as ∞→N , are their 
finite-size properties similar? The answer= is: not always. 
In the case under consideration, the thermodynamic 
equivalence of the models (2) and (3) has been proved by 
the AHM. The application of this method is based on the 
fact that (2) and (3) have a common approximating 
Hamiltonian and the proof of their thermodynamic 
equivalence passes through the limit ∞→N . For a finite 
N , we have just the lower and upper bounds on the 
difference of the free energies per spin (4). The closeness 
of the finite-size properties of the original and the effective 
model is a subtle problem, see, e.g., [31]. It has been 
reported (using the Holstain-Primakoff representation) that 
in some cases the finite-size corrections for DH  and NH  
are different [34]. If this is so for thermodynamic 
functions, then the problem of closeness of the measures 
of entanglement, such as the concurrence discussed in [23, 
35], is still more problematic, since these quantities probe 
the internal structure of the ground state in a more detailed 
way. 
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